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High-orderC1 finite-element interpolating schemes—Part II:
Nonlinear semi-Lagrangian shallow-water models
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SUMMARY

The finite-element, semi-implicit, and semi-Lagrangian methods are used on unstructured meshes to solve
the nonlinear shallow-water system. Several C1 approximation schemes are developed for an accurate
treatment of the advection terms. The employed finite-element discretization schemes are the PNC

1 –P1
and P2–P1 pairs. Triangular finite elements are attractive because of their flexibility for representing
irregular boundaries and for local mesh refinement. By tracking the characteristics backward from both
the interpolation and quadrature nodes and using C1 interpolating schemes, an accurate treatment of the
nonlinear terms and, hence, of Rossby waves is obtained. Results of test problems to simulate slowly
propagating Rossby modes illustrate the promise of the proposed approach in ocean modelling. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Free surface flows are encountered in a wide variety of natural phenomena, such as the description
of hydrodynamic currents, the transport of pollutant, and the evolution of oceanic and atmospheric
flows. The first numerical ocean models [1, 2] employed finite difference techniques and a leapfrog
scheme for time integration. The use of Galerkin-type methods in ocean modelling has been an
active area of research for the last three decades. The main advantages of these methods are a natural
treatment of boundary conditions and the flexibility of triangulation for representing the boundaries
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of complex domains and local mesh refinement. Their inherent grid flexibility in representing
steep gradients in currents and bathymetry offers a significant advantage to simulate nearshore and
coastal processes. Shallow-water equations have been first solved for coastal dynamics and global
ocean tide modelling [3–5]. Three-dimensional hydrostatic models have then been developed for
large-scale circulation using spectral elements [6], finite volumes [7, 8], and finite elements (FE)
[9–11]. A three-dimensional nonhydrostatic ocean model designed for both large- and small-scale
applications has also been developed [12]. The discontinuous Galerkin (DG) method [13, 14]
has been recently employed to discretize the shallow-water system [15–17]. Advantages of the
DG method include the local mass conservation and the possibility of employing high-order and
discontinuous basis functions.

Eulerian advection schemes are widely used for large-scale ocean models. For such schemes,
the accuracy of the nonlinear advection terms, and thus of the slow planetary or Rossby modes, is
determined by the order of spatial approximation. For advection-dominated problems, a high-order
spatial accuracy is desirable for the treatment of the Rossby modes. Indeed, Rossby waves play
an important role in the adjustment of oceanic and atmospheric flows. They propagate energy
westward and are responsible for the westward intensification associated with western boundary
currents in the large-scale oceanic circulation [18]. When continuous FE are employed, Eulerian
advection schemes usually suffer from significant numerical dispersion. This results in the use of
unphysical diffusion to keep the solution coherent and can adversely affect the accuracy of the
Rossby modes for long-term integrations. When DG formulations are used, the dispersion effects
are attenuated due to the higher flexibility of these methods that makes them better suited to
represent highly sheared flows [19].

In an FE context, both the accuracy and dispersion difficulties encountered with an Eulerian
scheme should, in principle, be circumvented by combining the FE scheme with a semi-Lagrangian
treatment of advection. Such a combination should benefit from the flexibility of FE meshes,
the small numerical dispersion of a semi-Lagrangian scheme, and the possibility of a high-order
treatment of the advection terms. Furthermore, the semi-Lagrangian scheme offers the possibility
of using time steps that exceed those permitted by the Courant–Friedrichs–Lewy (CFL) stability
criterion for Eulerian discretizations of advection-dominated flows. Note that in [20] the continuity
equation is discretized in an Eulerian manner to conserve mass while the momentum equations
are solved using semi-Lagrangian advection.

In the present study, a semi-Lagrangian method using high-order C1 interpolating schemes
based on the Hsieh–Clough–Tocher and Bell elements and the FE method employing the
P2–P1 and PNC

1 –P1 pairs are combined to solve the shallow-water equations on unstructured
meshes. Two semi-Lagrangian methods are considered by tracking the feet of the characteristic
lines either from the interpolation or from the integration nodes. In [21–24], the PNC

1 –P1
pair has been found a good candidate to discretize both inertia-gravity and Rossby waves.
High-order C1 schemes are employed in [25] in the case of the two-dimensional linear advec-
tion equation, and the dual kriging method has been used in [21, 26] for the semi-Lagrangian
advection.

The aim of this paper is to develop an accurate semi-Lagrangian method for ocean modelling.
This paper is organized as follows. In Section 2, the model equations are presented, and in
Sections 3 and 4, the time and space discretizations are, respectively, described. Results of
test experiments to simulate slowly propagating Rossby modes and aiming to outline the accu-
racy of the proposed methods are presented in Section 5. Some concluding remarks complete
the study.
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2. THE NONLINEAR SHALLOW-WATER EQUATION MODEL

Let � be a bounded domain in the two-dimensional space R2 with Lipschitz boundary �, g the
gravitational acceleration, k the unit vector in the vertical, and f the Coriolis parameter. Consider
an inviscid layer of constant and uniform density. The nonlinear inviscid shallow-water equations
in Cartesian coordinates [27] are expressed in logarithmic form as

Du
Dt

+g∇�+ f k∧u=0 (1)

Dln(H+�)

Dt
+∇·u=0 (2)

where D/Dt is the total or Lagrangian derivative

D

Dt
= �

�t
+u·∇ (3)

u=(u,v) is the horizontal mean velocity field, ∧ is the usual vector product, �(x, t) represents
the surface elevation above the reference level z=0, and x=(x, y) is the position vector. The
equilibrium depth is denoted by H(x) and the rigid bottom is defined by z=−H(x). Further,
the total depth �+H is supposed to be positive. System (1) is solved under the no-normal-flow
boundary condition:

u·n=0 on � (4)

where n is the unit outward-pointing normal at the boundary �.

3. TEMPORAL SEMI-DISCRETIZATION

A linear analysis of (1)–(2) reveals three solution frequencies per wave number. The first two are
fast inertia-gravitational modes, while the third is the Rossby mode, the mode of principal interest
here. For many geophysical flows, gravity modes usually carry relatively little energy compared
with the Rossby modes of the large-scale dynamics. However, when an explicit time discretization
scheme is used, e.g. the leapfrog scheme, the time step is limited by the propagation speed of
gravitational oscillations. In an atmospheric context [28, 29], a semi-implicit treatment of the
linear terms responsible for the rapidly propagating gravitational oscillations allows much larger
times steps. The semi-implicit scheme reduces the phase speed of these fast disturbances without
modifying their amplitude. Unless an accurate representation of the fast modes is important, gravity
waves may be considered as small-amplitude noise superimposed on the slow Rossby mode, and
they can justifiably be retarded by a semi-implicit scheme.

The maximum allowable time step, when using a semi-implicit scheme, still remains much
smaller than that based on accuracy consideration alone and is constrained by the CFL bound
associated with Eulerian advection. For advection-dominated flows, a semi-Lagrangian treatment
of advection combined with a semi-implicit scheme permits stable solutions with large time
steps. The possibility of stable integration with CFL greater than unity is not the only advantage
of a semi-Lagrangian advection scheme. It also gives good phase speeds with little numerical
dispersion compared with Eulerian schemes. However, due to the compulsory spatial reinterpolation
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of the semi-Lagrangian method, some damping does occur, affecting primarily the smallest scales,
provided sufficiently high-order interpolators are used [26, 30].

Let T be a positive real number and consider a partition of the time interval [0,T ] into N
subintervals [tn, tn+1], with �t= tn+1− tn for n=0,1, . . . ,N−1. Let m, n be two positive integers
and define

un+1
m ≡u(xm, tn+�t), unam ≡u(xm−am, tn) (5)

A schematic of the one-dimensional two-time-level semi-Lagrangian scheme [31, 32] is
described in Figure 1. A different set of particles is selected at each time step, and the particles are
required to arrive at mesh nodes at the end of the time step. The straight line (A

′
C) approximates

the exact trajectory (AC), both of which arrive at mesh point xm at time tn+�t . The particle
is displaced by the distance �m during the time �t . The total time derivative at mesh nodes is
the rate of change along flow characteristics, and the semi-Lagrangian advection thus uses time
differences along particle trajectories. The other terms in (1)–(2) are treated in a semi-implicit
manner as time averages along these trajectories, and we obtain

un+1
m −unam

�t
+ g

2
(∇�n+1

m +∇�nam )+ 1

2
f (k∧un+1

m + f k∧unam )=0 (6)

[ln(H+�)]n+1
m −[ln(H+�)]nam

�t
+ 1

2
(∇·un+1

m +∇·unam )=0 (7)

For the sake of simplicity, we let

[Ru]nam =unam −g
�t

2
∇�nam − �t

2
k∧ f unam (8)

[R�]nam =[ln(H+�)]nam − �t

2
∇·unam (9)

and (6)–(7) are rewritten as

un+1
m +g

�t

2
∇�n+1

m + �t

2
k∧ f un+1

m =[Ru]nam (10)

[ln(H+�)]n+1
m + �t

2
∇·un+1

m =[R�]nam (11)

To compute the right-hand sides (RHS) of (10) and (11), we need to evaluate [Ru]nam and [R�]nam .
We first determine am by approximate integration of the displacement equation Dx/Dt=u(x, t) that
defines the trajectories. A first-order estimate a0m =�tu(xm, tn) is combined with several iterations
of a second-order Runge–Kutta corrector:

ak+1
m =�t u∗

(
xm− a

k
m

2
, tn+ �t

2

)
, k=1,2,3, . . . (12)

using interpolation when evaluating the RHS. In order to have sufficiently accurate O(�t2) esti-
mates of the trajectory, a two-time-level scheme [31, 32] (see Figure 1) extrapolates the velocity
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Figure 1. A two-level semi-Lagrangian advection scheme. Approximated (A′C) and exact (AC) trajectories
arrive at node xm at time tn+�t . The particle is displaced by the distance �m during the time �t .

field at all nodes at time (tn+�t/2):

u∗
(
x, tn+ �t

2

)
= 3

2
u(x, tn)− 1

2
u(x, tn−�t)+O(�t2) (13)

Finally, [Ru]nam and [R�]nam are computed by using an interpolator. The choice of an interpolating
scheme has a crucial impact on the accuracy of the method, and this question is addressed in the
following section.

4. FE DISCRETIZATION

4.1. The weak formulation

We assume that um and �m belong to the spaces V and Q, respectively, with Q and V being
either the square-integrable space L2 (�) or the Sobolev space H1 (�), i.e. the space of functions
in L2 (�) whose first derivatives belong to L2 (�). The weak formulation of (10) and (11) requires
the test functions U and � to be sufficiently regular and to, respectively, belong to the same
function space as um and �m , such that∫

�
un+1
m ·Ud�+g

�t

2

∫
�

∇�n+1
m ·Ud�+ �t

2

∫
�
f k∧un+1

m ·Ud�=
∫

�
[Ru]nam ·Ud� (14)

∫
�
[ln(H+�)]n+1

m �d�+ �t

2

∫
�

∇·un+1
m �d�=

∫
�
[R�]nam�d� (15)

where the area element is d�=dx dy.
Depending on the regularity of functions um and �m , the terms containing derivatives in (14)

and (15) may be integrated by parts using Green’s theorem, by letting um ·n=0 on � for all um
belonging to V.
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4.2. Galerkin FE discretization

The Galerkin method approximates the solution of (14) and (15) in finite-dimensional subspaces.
Consider an FE triangulationLh of the polygonal domain�, where h is a representative meshlength
parameter that measures resolution. For triangle K ∈Lh , let Pn(K ) denote the space of polynomials
of degree n on K .

The discrete solutions uh and �h sought belong to finite-dimensional spaces Vh and Qh ,
respectively, whose restrictions on K belong to Pk(K )×Pk(K ) for uh and to Pl(K ) for �h .
The quantities uh and �h are represented over a triangle K by interpolating functions Uk of
degree k and �l of degree l, respectively, with Uk belonging to Vh and �l belonging to
Qh . Introducing the FE basis leads to an FE statement as in (14) and (15) but with um,�m
replaced by the FE trial functions uh,�h and Uk and �l replaced by the corresponding FE
test functions. The resulting system is nonlinear due to the presence of the logarithmic term
in the left-hand side (LHS) of the continuity equation and it is solved by applying Newton’s
method. To do so, the Gâteaux derivative of the logarithmic term on the LHS of (15) is formally
computed.

4.3. Newton–Raphson procedure

Let p and pmax be two integers. For p=0, . . . , pmax, we set un+1,p+1
h =un+1,p

h +�up
h and

�n+1,p+1
h =�n+1,p

h +��p
h . For a given initial guest (un+1,0

h ,�n+1,0
h ) and p=0, . . . , pmax, Newton–

Raphson’s procedure aims at the determination of (�up
h ,��p

h ) such that∫
�

�up
h ·Uk d�+g

�t

2

∫
�

∇��p
h ·Uk d�+ �t

2

∫
�
f k∧�up

h ·Uk d�

=Fu(u
n+1,p
h ,�n+1,p

h , [Ru]nam ) (16)

∫
�

��p
h

H+�n+1
h

�l d�+ �t

2

∫
�

∇·�up
h�l d�=F�(u

n+1,p
h ,�n+1,p

h , [R�]nam ) (17)

where

Fu(u
n+1,p
h ,�n+1,p

h , [Ru]nam ) ≡
∫

�
un+1,p
h ·Uk d�+g

�t

2

∫
�

∇�n+1,p
h ·Uk d�

+�t

2

∫
�
f k∧un+1,p

h ·Uk d�−
∫

�
[Ru]nam ·Uk d� (18)

and

F�(u
n+1,p
h ,�n+1,p

h , [R�]nam ) ≡
∫

�
[ln(H+�)]n+1,p

h �l d�

+�t

2

∫
�

∇·un+1,p
h �l d�−

∫
�
[R�]nam�l d� (19)
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4.4. P2–P1 and PNC
1 –P1 FE formulations

We now introduce the FE schemes that are used for the spatial discretization. Two candidates
of FE pair for representing velocity and surface elevation are described and evaluated in the
remainder of this paper. Common to the two pairs is piecewise-linear continuous representation
of surface elevation, and they differ from one another in their representation of velocity. The
P2–P1 pair [33], also known in the literature as the Taylor–Hood element, has quadratic velocity
basis functions. The PNC

1 –P1 pair [22–24, 34] has velocity nodes at triangle edge midpoints, and
linear basis functions are used to approximate the two velocity components on the element’s two-
triangle support. Since this particular representation of velocity is continuous only across triangle
boundaries at midpoint nodes and discontinuous everywhere else around a triangle boundary, this
element is termed nonconforming (NC) in the FE literature. The orthogonality property of the NC
velocity basis functions leads to diagonal mass matrices and thus greatly enhances computational
efficiency.

The space Vh is the set of functions uh whose restriction on K belongs to P2(K )×P2(K ) for
the P2–P1 pair and to P1(K )×P1(K ) for the PNC

1 –P1 one, with uh being continuous only at the
midpoints of each face of Lh for the latter pair. For both pairs we have uh ·n=0 on �. To avoid
computing velocity derivatives for the PNC

1 –P1 approximation, the divergence terms appearing in
(15) and hence (17) are integrated by parts using Green’s theorem. In this way, only � derivatives
are required and not U derivatives.

To calculate [Ru]nam and [R�]nam in (16) and (17), two semi-Lagrangian methods are considered.
In the first case, one uses the characteristic stemming backward from the interpolation nodes,
named here as interpolation semi-Lagrangian FE method (ISLFEM), while in the second case one
uses those stemming from the quadrature nodes, named here as quadrature semi-Lagrangian FE
method (QSLFEM). These methods are described in [25] in the case of the two-dimensional linear
advection equation, and they are now briefly reviewed in the present context.

4.5. Interpolation and quadrature semi-Lagrangian FE methods

The ISLFEM procedure evaluates the integrals in the RHS of (16) and (17) following the five-step
process:

(i) Obtain [Ru]n and [R�]n at each node at time tn .
(ii) Evaluate the displacement am at each interpolation node at time tn using (12).
(iii) Compute [Ru]n and [R�]n at the upstream positions xm−am by using an interpolation

scheme to obtain [R̂u]n and [R̂�]n .
(iv) Expand [R̂u]n and [R̂�]n in terms of the basis functions as [R̂u]n =∑

i [R̂u]ni ·Ui and
[R̂�]n =∑

j [R̂�]nj� j on each triangle K of Lh .
(v) Compute the integral in the RHS of (16) and (17) by employing a numerical quadrature:∫

K
[Ru]nam ·Uk d�=∑

i

∑
q

�q [R̂u]ni Ui (�q) ·Uk(�q) (20)

∫
�
[R�]nam�l d�=∑

j

∑
q

�q [R̂�]nj� j (�q)�l(�q) (21)

where �q and �q are the weights and points of the used quadrature formula, respectively.
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For the QSLFEM, the algorithm is completed following the four-step process:

(i) Obtain [Ru]n and [R�]n at each node at time tn as for the ISLFEM.
(ii) Evaluate the displacement am at each integration node at time tn using (12).
(iii) Compute [Ru]nam and [R�]nam at the upstream points �q −am(�q) by using an interpolation

scheme.
(iv) Compute the integral in the RHS of (16) and (17) by employing a numerical quadrature∫

K
[Ru]nam ·Uk d�=∑

q
�q [Ru]n(�q −am(�q))U(�q) ·Uk(�q) (22)

∫
�
[R�]nam�l d�=∑

q
�q [R�]n(�q −am(�q))�(�q)�l(�q) (23)

The accuracy of the nonlinear terms mainly derives from the semi-Lagrangian treatment of
advection in the present formulation and not from the accuracy of the FE scheme. Furthermore,
a semi-implicit scheme is used to discretize the terms responsible for the rapidly propagating
gravitational oscillations and also for the Coriolis terms. The calculation of [Ru]nam and [R�]nam
in (16) and (17), and hence the accuracy of the method, strongly depends on the choice of the
interpolation procedure at step (iii) for the ISLFEM and the QSLFEM, respectively. The bicubic
spline interpolation has been found to be a good compromise between accuracy and computational
cost for short-term simulations in the context of atmospheric models [31, 35, 36]. For oceanic
models, where long-term simulations are of primary importance, bicubic spline interpolation could
introduce undesirable dissipation. In [26, 37] the kriging method has been used as a proof-of-
concept test and was found to yield equally high-order accuracy results on regular grids and
unstructured meshes. Here, we employed a class of C1 FE interpolating schemes based on the
Hsieh–Clough–Tocher FE reduced and complete, named here as HCT-C and HCT-R, respectively,
and the Bell family. These schemes are detailed in [25] in the case of the two-dimensional
linear advection equation, and they give comparable numerical results as the kriging scheme on
structured meshes. In the sequel, the use of C1-interpolating schemes on unstructured meshes is
investigated.

4.6. The boundary condition

At a boundary node, the no-normal-flow condition (4) needs to be applied across element boundary,
which is not necessarily parallel to the Cartesian coordinate axes. For the PNC

1 –P1 pair, velocity
nodes are located at triangle midedge points, and hence the local normal vector is uniquely defined
along the boundary. However, this is not the case for the conforming P2–P1 pair since velocity
nodes are in part located at the vertices.

This problem has been addressed by Gray [38] for the case of the shallow-water equations. In
the present work, we employ the normal to the boundary defined as follows: given a boundary
node, a regular surface is constructed using all the elements that share the given node, and we
consider the normal to that surface. The momentum equations corresponding to a boundary node in
(16) are then transformed into tangential and normal equations. The local x–y coordinate system at
this node is rotated to coincide with the tangential and normal directions, and the no-normal-flow
boundary condition is applied [39].
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5. NUMERICAL EXPERIMENTS

The results of two tests using the combination of the FE, semi-implicit, and semi-Lagrangian
methods are now presented. The P2–P1 and PNC

1 –P1 pairs are used for the FE method, and
the semi-Lagrangian advection employed the ISLFEM and the QSLFEM with C1-interpolating
schemes. In both tests, the slowly propagating Rossby modes are simulated and the model is run
as a reduced-gravity model with parameters set to correspond to the first internal vertical mode
of a baroclinic model. This formulation precludes any influence of the bathymetry, and the mean
depth H is therefore set constant in the simulations.

5.1. Equatorial Rossby soliton

In the first experiment the propagation of an equatorial solitary Rossby wave is examined. Equatorial
solitons are confined to a narrow band about the equator by Coriolis forces, and they should preserve
their shape while travelling westward at a constant phase speed in the absence of dissipation. The
goal of this experiment is to reproduce numerically the main characteristics of such a propagation.
The �-plane approximation, f = f0+�y, is used, where f0=2�sin�0 is the reference Coriolis
parameter, �=2(�/R)cos�0 is the �-parameter, and R and � are the Earth’s radius and the
angular frequency of the Earth’s rotation, respectively. We introduce the adimensional variables:

x= Lx′, t=T t ′, u=Uu′, �=H�′ (24)

where L= RE−1/4,T =E1/4(2�)−1, U =√
g′H , and E=(2�)2/(g′H) is the Lamb number. By

taking g′ =4×10−2ms−2 and H =100m, the gravity wave speed isU =2ms−1, and it corresponds
to the wave speed of the first baroclinic mode. Those values yield a length scale of 296 km and
a time scale of 41 h. By substituting the adimensional variables from (24) into (1) and (2) and
omitting the primes, the shallow-water system is obtained on an equatorial �-plane (i.e. for �0=0)
in a reduced gravity form:

Du
Dt

+∇�+ yk∧u=0 (25)

Dln(1+�)

Dt
+∇·u=0 (26)

which is solved subject to the no-normal boundary condition (4). The rectangular domain extent
is 32×8 adimensional units. The mesh resolution is h′ =0.5 in the refined region and h′ =1
elsewhere in adimensional unit with h′ =h/L . To balance the temporal and spatial truncation
errors, we choose �t ′ =0.25 adimensional time unit, and the gravitational Courant number is
thus c≡UT�t ′/(h′L)≈1, where h′ is defined to be the distance between a midside node and an
adjacent vertex node. The mesh used for the experiment is shown in Figure 2.

The velocity field and the surface elevation at the initial time are

u(x, y, t=0)= AB2 (6y2−9)

4
sech2(Bx)exp

(−y2

2

)
(27)

v(x, y, t=0)=−4AB3y tanh(Bx)sech2(Bx)exp

(−y2

2

)
(28)
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Figure 2. The mesh used in the equatorial Rossby soliton experiment.

�(x, y, t=0)= AB2 (6y2+3)

4
sech2(Bx)exp

(−y2

2

)
(29)

For this experiment the P2–P1 and PNC
1 –P1 pairs lead to very close solutions and only the results

for the P2–P1 pair are presented. At the beginning of the simulation, the surface elevation loses
approximately 5% of its initial amplitude, which propagates eastward as equatorial Kelvin waves.
This is because the initial condition is not an exact solitary solution. Meanwhile the equatorial
solitary Rossby wave propagates westward. The ISLFEM and the QSLFEM are used for three
classes of C1 interpolators: the HCT-R, HCT-C, and Bell approximation schemes. The isolines of
the surface elevation are shown in Figures 3 and 4 after 55 days of integration (32 adimensional
time units) for these methods.

For the ISLFEM, the soliton exhibits small-amplitude noise for the HCT-R and HCT-C schemes,
as shown in Figure 3. For the Bell approximation, the solution is much more noisy and the soliton
has almost lost its initial shape. Much better results are obtained in Figure 4 for the QSLFEM
since the equatorial soliton propagates westward with little change in shape. Note that a severe
damping of the solution occurs for the ISLFEM with the HCT-R and HCT-C schemes. The phase
velocity is shown in Table I and could be compared with the asymptotic solution of Boyd [40]
which predicts a value of 0.78ms−1. The QSLFEM results are very satisfactory and they compare
well with those obtained in [21] using the PNC

1 –P1 pair and the kriging scheme for the ISLFEM.
An important issue in the discretization of the shallow-water system is mass conservation. The

mass variation (MV), defined as MV≡∫
� �(x, t)d�/

∫
� �(x, t=0)d�, is shown in Figures 5 and 6

for the ISLFEM and the QSLFEM after 55 days of simulation. For the ISLFEM, we obtain
MV=0.81 and 0.75 for the HCT (HCT-R and HCT-C) and Bell approximations, respectively. The
loss of mass is thus significant (19 and 25% for the HCT and Bell schemes, respectively). For
the QSLFEM, MV=0.993,0.9955, and 0.9963 for the HCT-R, HCT-C, and Bell approximations,
respectively, and the loss of mass is thus less than 1%. These results clearly show that the QSLFEM
better conserves mass than the ISLFEM in the present context.

5.2. Anticyclonic eddy propagation

For the second test problem, the slowly propagating Rossby modes are simulated in the case of
the evolution of an anticyclonic eddy at midlatitudes. The computational domain is a realistic
geometry of the Gulf of Mexico and it is approximately 1800km×1350km. The mesh is shown in
Figure 7 with a resolution of 20 km in the western part of the Gulf and 60 km in the eastern part.
The basin is assumed to be closed. Although this experiment is highly idealized, it is expected
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(a)

(b)

(c)

(d)

Figure 3. Isolines of the surface elevation for the ISLFEM after 55 days (32 adimensional time units) for the
HCT-R, HCT-C, and Bell approximation schemes. The minimum (Min) and maximum (Max) values of the
surface elevation are indicated: (a) initial solution, Min=0,Max=0.168; (b) HCT-R, Min=−0.038379,
Max=0.11498; (c) HCT-C, Min=−0.03958,Max=0.11397; and (d) Bell, Min=−0.7824,Max=0.1784.

that certain observed features of the life cycle of anticyclonic eddies in the western Gulf should
be simulated.

Equations (1) and (2) are solved with g replaced by g′ subject to the no-normal-flow condition
(4). A Gaussian distribution of � centered at the middle of the domain is prescribed at initial
time

�(x, y, t=0)=C exp(−D(x2+ y2)) (30)
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(a)

(b)

(c)

Figure 4. As for Figure 3 but for the QSLFEM: (a) HCT-R, Min=−0.00716,Max=0.15912; (b) HCT-C,
Min=−0.00714,Max=0.15912; and (c) Bell, Min=−0.007359,Max=0.15818.

Table I. The phase velocity for the ISLFEM and the QSLFEM using the
HCT-R, HCT-C and Bell approximation schemes.

ISLFEM QSLFEM

HCT-R 0.6788 0.7977
HCT-C 0.6751 0.7977
Bell 0.8449 0.7954

and the initial anticyclonic velocity field is taken to be in the geostrophic equilibrium k∧u=g′∇�;
hence,

u(x, y, t=0) = 2g′

f
CDy exp(−D(x2+ y2))

v(x, y, t=0) = −2g′

f
CDx exp(−D(x2+ y2))

(31)

whereC=68.2m and D=5.92×10−11m−2. The �-plane approximation is used where f0 and � are
evaluated at 25◦N. We choose g′ =1.37×10−1ms−1 and H =100m; hence, the mean gravity wave
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Figure 5. Mass variation as a function of time for the ISLFEM and the HCT-R, HCT-C and Bell schemes
after 32 adimensional time units (55 days).
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Figure 6. As for Figure 5 but for the QSLFEM.

speed is
√
g′H ≈3.7ms−1 and the radius of deformation at midbasin is Rd =√

g′H/ f0≈60km.
The time step is 300 s and this choice yields the gravitational Courant number

√
g′H�t/h≈0.1.

Simulation results are shown for the QSLFEM since for the ISLFEM after only one day of
simulation, the eddy has lost more that 50% of its amplitude. The PNC

1 –P1 and P2–P1 pairs are
used, and the eddy is located at the center of the Gulf of Mexico at initial time. The geostrophic
balance of the velocities imposed a readjustment of the flow toward a gradient wind balance on
the � plane after flow’s initialization. For this reason, � loses approximately 10% of its initial
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Figure 7. The unstructured mesh of the Gulf of Mexico: 8001 triangles, 4092 vertices, 12 092 edges. The
mesh resolution is 20 km in the western part of the Gulf and 60 km in the eastern part.

amplitude for both pairs. However, this slight imbalance in the initial condition does not amplify
during the simulation. The eddy migrate to the west and its westerly race exhibits a southwestern
drift due to nonlinear effects. This is in agreement with the dynamic of Rossby waves.

5.2.1. The PNC
1 –P1 approximation. Results for the PNC

1 –P1 pair and the HCT-R, HCT-C and Bell
C1 interpolating schemes are now discussed. The isolines of the surface elevation are shown in
Figure 8 at different stages of the eddy propagation for the HCT-R approximation. Results for the
HCT-C and Bell schemes are not shown since they are very similar to the HCT-R ones. However,
the maximum and minimum values of the surface elevation are shown in Table II for the three
schemes during the 11 weeks of simulation. The maximum values of the flow speed field are
graphed in Figure 9.

After 11 weeks of simulation, the loss amplitude for � is 19.03, 18.9, and 14.07% for the
HCT-R, HCT-C, and Bell approximations, respectively. The loss of amplitude for the flow speed
field is 9.7 and 9.8% for the HCT-R and HCT-C schemes, respectively, and an increase of 2.5%
for the Bell approximation. In [21], the use of the PNC

1 –P1 pair and a kriging approach for the
ISLFEM leads to a loss of amplitude of 22.31 and 14% for the surface elevation and flow speed
field, respectively. However, the use of an Eulerian scheme in [21] (with the PNC

1 –P1 pair) gives
slightly better results since the loss of amplitude is only 15.26 and 6% for the elevation and flow
speed field, respectively. Note that contrary to [21] there is no need to introduce an eddy-diffusion
term in the present study for the semi-Lagrangian advection.
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Figure 8. Isolines of the surface elevation at different times of the propagation for the PNC
1 –P1

FE pair and the HCT-R approximation.
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Figure 9. Maximum values of the flow speed field for the QSLFEM and the PNC
1 –P1 FE pair during the

propagation (11 weeks) for the HCT-R, HCT-C, and Bell approximation schemes.

As shown in Figure 10 the mass is well conserved after 11 weeks of simulation. We have
MV =0.9917,0.9924, and 0.9976 for the HCT-R, HCT-C, and Bell approximations, respectively.
The loss of mass is thus less than 1% for the QSLFEM.

5.2.2. The P2–P1 approximation. Results for the P2–P1 pair and the HCT-R interpolating scheme
are now analyzed. The results for the HCT-C are not presented since they are very similar to
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Table II. Maximum and minimum values of the surface elevation and velocity fields for
the QSLFEM and the PNC

1 –P1 pairs using the HCT-R, HCT-C, and Bell approximation
schemes and the P2–P1 pair using the HCT-R scheme.

PNC
1 –P1 (elevation) P2–P1 (HCT-R)

Week HCT-R HCT-C Bell Elevation Velocity

1 60.925 60.952 61.296 60.688 1.083
−1.355 −1.328 −1.460 −1.410 0

2 60.270 60.293 60.993 60.017 1.045
−2.346 −2.343 −2.409 −2.374 0

3 59.301 59.297 60.204 58.387 1.040
−3.532 −3.533 −3.627 −3.596 0

4 59.143 59.162 60.306 58.555 1.004
−4.634 −4.651 −4.844 −4.661 0

5 58.185 58.185 59.772 57.468 0.995
−5.392 −5.392 −5.518 −5.391 0

6 57.599 57.623 59.566 56.793 0.979
−5.845 −5.870 −6.038 −5.893 0

7 57.042 57.077 59.197 56.169 0.948
−6.176 −6.171 −6.230 −6.284 0

8 56.860 56.910 59.201 55.814 0.932
−6.434 −6.432 −6.545 −6.563 0

9 56.860 56.338 59.061 55.044 0.922
−6.444 −6.432 −6.453 −6.635 0

10 55.843 55.901 58.687 54.609 0.907
−6.430 −6.401 −6.488 −6.643 0

11 55.216 55.301 58.600 53.885 0.885
−6.405 −6.380 −6.488 −6.610 0
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Figure 10. Mass variation for the QSLFEM and the PNC
1 –P1 FE pair during the propagation (11 weeks)

for the HCT-R, HCT-C, and Bell approximation schemes.
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Figure 11. As for Figure 10 but for the P2–P1 FE pair and the HCT-R scheme.

Figure 12. Isolines of the velocity field at different times of the propagation for the P2–P1 FE
pair and the HCT-R approximation.

the HCT-R ones, as in the previous section. The isolines of the flow velocity field are shown in
Figure 12 at different stages of the eddy propagation, and the Rossby wave dynamics is again well
reproduced. The contour plots for the surface elevation are not shown since the results are very
similar to those obtained in Figure 8 for the PNC

1 –P1 pair. The maximum and minimum values
of the elevation and flow speed field are presented in Table II during the simulation. The loss of
amplitude is 20.98 and 14.19% for the elevation and flow speed field, respectively, after 11 weeks
of propagation. Compared with the PNC

1 –P1 results, the loss of amplitude for � is thus slightly
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higher, but the damping is much severe for the flow speed field, although the approximation for
velocity is quadratic for the P2–P1 pair and linear for the PNC

1 –P1 one. As shown in Figure 11,
the mass is well conserved since we have MV=0.999 after 11 weeks of simulation.

6. CONCLUSION

The finite element, semi-implicit, and semi-Lagrangian advection methods have been successfully
combined on unstructured meshes to solve the nonlinear shallow-water equations. Both contin-
uous and discontinuous FE schemes are employed, namely the P2–P1 and PNC

1 –P1 pairs. In this
paper, two semi-Lagrangian methods are considered by tracking the feet of the characteristic lines
either from the interpolation (ISLFEM) or from the integration (QSLFEM) nodes. The C1 interpo-
lating schemes for semi-Lagrangian advection include the Hsieh–Clough–Tocher FE reduced and
complete and the Bell family.

Two test problems involve the propagation of an equatorial solitary Rossby wave and the
evolution of an anticyclonic eddy at midlatitudes. The Rossby wave dynamics of the propagation
is well simulated by the model for the QSLFEM, which provides an accurate computation of the
Rossby modes. The Hsieh–Clough–Tocher interpolation schemes have been found more accurate
than the Bell scheme. The mass is well conserved for both tests, since the loss of mass is less
than 1% after few weeks of simulation. For the ISLFEM, the propagation is also well simulated
but the method leads to overdamped results. Although the QSLFEM may lead to instabilities [25],
such a difficulty has not been encountered in the present work. These encouraging results suggest
undertaking further experiments with a realistic bathymetry and wind forcing.
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